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Fig . 3-Structural changes in polycrystalline bismuth induced by hydrostatic pressure. (a) Original structure; (b) after 
10,000 bars; (e) after 15,000 bars; (d) after 20,000 bars. X100 . Reduced approximately 10 pct for reproduction . 
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(a) (b) 
Fig. 4-Structural changes in polycrystalline tin induced by hydrostatic pressure. (a) Original structure; (b) after 26,000 
bars. XIOO . Reduced approximately 10 pct for reproduction. 

nitude of the boundary migration increased with in­
creasing pressure in zinc, cadmium, and bismuth. 
In tin, deformation only initiated at 26 kbars and was 
also in the form of boundary migration. At increas-
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ing pressure, slip, multiple slip, and twinning be­
came quite evident in the case of zinc and cadmium. 
In contrast, it is interesting to note that in bis­
muth no mechanical twinning was observed even at 
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the maximum pressures utilized even though it is 
the primary mode of deformation at atmospheric 
pressure. 2 (The mechanical twins, which can be 
seen at the upper left-hand corners of the photo­
micrographs in Fig. 3, were due to prior polishing.) 
Thus, pressure may have some effect on twinning 
propensity in some metals. 

It is interesting to note that a possible pressure­
induced phase transition has been r eported by 
Bridgman7 in polycrystalline cadmium below 7 
kbars. To verify this , electrical-resistance meas­
urements were taken as a function of pressure for 
simultaneously pressurized single and polycrystal­
line samples. No discontinuities in electrical re­
sistance were observed in the pressure region of 
concern . In addition , examination of the photomi­
crographs for cadmium do not show any images 
indicative of a phase change taking place under 
pressure based on the technique utilized for poly­
morph studies in bismuth. 8 Thus, the resistivity 
change observed by Bridgman in the above pressure 
range must be attributable to other than a phase 
change. 

As far as the residual effects of pressure cycling 
on mechanical properties is concerned, one would 
not expect any as long as the pressure-induced de­
formation is solely elastic, as in the case of single 
phase , isotropiC , or nearly isotropic materials at 
low pressures. This has been borne out by Ferron's 9 
results on magnesium and aluminum to pressures 
of 13.8 kbars, and by Bullen et al. lO on high-purity 
iron to 10 kbars. However , when one considers a 
multiphase material in which there is a substantial 
difference in the elastic properties of the various 
phases, or a polycrystalline anisotropic ma~er~~ , 
pressure cycling may have an effect. Radcliffe 
found a loss in the sharp yield point and a substan­
tiallowering of the yield strength in annealed mild 

l 10 steel pressure cycled to 25 kbars , and Bullen et a . 
observed a similar phenomena in Armco iron (0.03 
pct C) after cycling to 10 kbars. This lowering of 
the yield strength has been attributed to micro­
scopic plastic strains resulting from shear stresses 
in the region of the carbide and ferrite phase bound­
aries due to differences in compressibility. 

The effect of pressure cycling to 20 kbars upon the 
tensile properties of a polycrystalline Zn + 0.27 
pct Cu + 0.005 pct Fe alloy, which exhibited the 
same form of pressure-induced deformation as pure 
zinc, is shown in Fig. 5. This is a plot of the aver­
age stress-strain curves for six as-received and 
six pressure-treated specimens; the data spreads 
at several points of interest being indicated by the 
arrows. The average flow stress and the ultimate 
tensile stress have been slightly increased by pres­
sure cycling. However, the data spreads overlap; 
thus the effects of pressure cycling upon tensile 
properties are considered insignificant. The data 
spread in the total elongation is much greater for 
the pressure - cycled specimens . 
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Fig . 5-Stress V B s tr ain fo r polyc rystalline zinc alloy. 

CONCLUSIONS 

Hydrostatic pressures of sufficient magnitude 
can induce microscopic plastic flow in elastically 
anisotropic polycrystalline metals but not in homo­
geneous single crystals or elastically isotropic 
polycrystals . The propensity to deform is related 
directly to the linear-compressibility ratio. 

The approximate pressures for the onset of grain 
boundary migration, slip, twinning, and/ or multiple 
slip in anisotropic cadmium, zinc, bismuth, and tin 
have been determined. Zirconium, magnesium , cop­
per , and iron, being isotropic or nearly isotropiC, 
were not deformed by pressure. 

The severe microscopic plastic flow induced in a 
polycrystalline zinc alloy by hydrostatic pressure 
cycling to 20 kbars has no significant effect upon the 
tensile properties. 
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